Abstract

Cave passages that are found at similar elevations are grouped together and called levels. The current understanding is that passages within a level are speleogenetically linked to a common static baselevel or stratigraphic control. Cave levels have provided an interpretive framework for deciphering cave development, landscape evolution, and climatic changes. Cosmogenic dating has been successfully used to interpret levels in Mammoth Cave and the Cumberland Plateau; however, this technique is expensive and there are limited funding resources available. Geographic information systems may be used as preliminary procedures to identify cave levels and constrain the timing of level development. A GIS method is applied to the Carter Cave system in northeastern Kentucky. Cave entrance elevations along stream valleys were found by extracting elevation values from a m digital elevation model. Using a histogram generated from the frequency of cave elevations and a natural breaks classifier, four cave levels were identified in the Carter Cave system. This work improves the understanding of the Carter Cave system evolution and contributes toa methodology that can be used to ascertain an erosion history of karst systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.