Abstract

The heavy reliance of the global food chain on the use of fossil fuels and anticipated rise in global population threatens future global food security. Due to the complexity of the food and energy systems, the impact of adequate food, climate or energy policies should be carefully examined in a modelling framework which considers the interaction of the food and energy systems. However, due to the different modelling approaches available, it can be very difficult to identify which method best suits the required purpose. This paper presents the three main modelling approaches as ‘top-down’, ‘bottom-up’ and hybrids. It reviews different models under each category in terms of the practicality, benefits and limitations with reference to different past studies. Bottom-up approaches generally tend to provide high levels of details, but their specificity to particular products/processes detracts their application to holistic models. On the other hand, top-down approaches consider the holistic aspects of the food chain, but the limited level of disaggregation prevents the identification of energy and environmental hot-spots. As a result, hybrid models seek to reduce the limitations of the individual approaches. This paper shows that the choice of one modelling approach over another depends on a variety of criteria including data requirements, uncertainty, available tools, time and labour intensity. Furthermore, future models and studies have to increasingly consider the inter-dependence of implementing social, demographic, economic and climate considerations in a holistic context to predict both short- and long-term impacts of the food chain.

Highlights

  • The heavy reliance of the global food chain on the use of fossil fuels and anticipated rise in global population threatens future global food security

  • Top-down approaches consider the holistic aspects of the food chain, but the limited level of disaggregation prevents the identification of energy and environmental hot-spots

  • This paper shows that the choice of one modelling approach over another depends on a variety of criteria including data requirements, uncertainty, available tools, time and labour intensity

Read more

Summary

Introduction

The heavy reliance of the global food chain on the use of fossil fuels and anticipated rise in global population threatens future global food security. Overall perspective The Food and Agriculture Organisation of the United Nations (FAO) has expressed concern over the high dependence of the global food sector on fossil fuels and the projected 70% increase in current food consumption by 2050 due to the rise in global population (FAO [1]). The food sector accounts for 30% of the global energy consumption and 20% of global greenhouse gas (GHG) emissions, with a major contribution from fossil fuels (FAO, [1,2]). The nexus can be summarised as follows: high usage of fossil fuels impacts the climate due to GHG emissions - the food sector is heavily dependent on fossil fuels and becoming even more so due to rise in global population - but fossil fuel reserves are depleting and climate change is expected to lower average agricultural yields (Lobell et al [4]; Roberts et al [5]).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.