Abstract

Field-Programmable Gate Arrays (FPGAs) are widely used for custom hardware implementations, including in many security-sensitive industries, such as defense, communications, transportation, medical, and more. Compiling source hardware descriptions to FPGA bitstreams requires the use of complex computer-aided design (CAD) tools. These tools are typically proprietary and closed-source, and it is not possible to easily determine that the produced bitstream is equivalent to the source design. In this work, we present various FPGA design flows that leverage pre-synthesizing or pre-implementing parts of the design, combined with open-source synthesis tools, bitstream-to-netlist tools, and commercial equivalence-checking tools, to verify that a produced hardware design is equivalent to the designer’s source design. We evaluate these different design flows on several benchmark circuits and demonstrate that they are effective at detecting malicious modifications made to the design during compilation. We compare our proposed design flows with baseline commercial design flows and measure the overheads to area and runtime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call