Abstract

With the electrification of powertrains and the progressive implementation of assisted and automated driving functions, the vehicle wiring harness is becoming increasingly important in the automotive industry. The design of the wiring harness is gaining considerable variation and is becoming more and more complex. In order to master this complexity in the manufacturing processes in a reliable manner, new approaches are required for the progressive automation of the wiring harness production. Additive manufacturing processes have not yet been used in the production of vehicle wiring harnesses. The development of additive processing of conductive materials therefore creates a new basis for the development of automation solutions to produce vehicle wiring harnesses. With the approach of function-integrated multi-material application, the possibility of using electrically conductive polymers in the vehicle wiring harness is specified in detail. A fundamental study was carried out to determine the values of electrical conductivity that can be achieved in the field of plastics. Based on these findings, the research question being addressed is whether polymers can be made electrically conductive to an extent that is suitable for use in a vehicle’s wiring harness. The materials of electrically conductive components from conventional vehicle electrical systems serve as a reference. A specially developed test set-up for measuring the electrical conductivity of polymers provided the required measured values. The quantitative evaluation of the measurements clearly shows that the use of conductive polymers as a conductive material in the vehicle wiring harness is only possible to a limited extent. The major benefit of the study identified the use of electrically conductive polymers for the automatable production of electrical connections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.