Abstract

In a general optical system, spherical aberration will arise when the on-axis position of an object is changed from its optimum position to another point. Induced spherical aberration can be used to compensate the aberration caused by inserting or removing a medium plate with any thickness that has a refractive index that differs from that of the original. To generate a degree of adequate aberration to balance the aberration from a thin layer, it is necessary to estimate the amount of arising aberration correctly when a point object deviates from its aberration-free position. We analytically induce the exact form of an arising spherical aberration with an on-axis object position for general optical systems that satisfy the Abbe sine condition and express a fourth-order approximation of that form using simple parameters that are conventionally used for the aberration of a thin lens. To verify the correctness of the proposed formula, a comparison between this analysis and simulation results is applied to several sample optical systems using commercial lens-design software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.