Abstract
Thermal fatigue may initiate at a T-junction or a branched off line where high and low temperature fluids mix. These are common piping elements in nuclear power plants. To ensure structural integrity against thermal fatigue during the design phase, it is important to estimate thermal load from such design specifications as flow rate, temperature difference, pipe diameter, etc. IMAT-F, an evaluation method integrating thermal hydraulic and structural analysis, was developed in this study to precisely determine thermal load excluding safety margins or conservative engineering judgment. The method was validated by numerical flow simulations of high-cycle thermal fatigue experiment SPECTRA, conducted by Japan Atomic Energy Agency. Results confirmed that IMAT-F can accurately simulate fluid and pipe wall temperature fluctuation using fluid-structure coupled analysis. Thermal stress fluctuation resulting from distribution of temperature fluctuation in the pipe wall was then calculated. Fluctuation fatigue life was also estimated for comparison with the experimental results.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have