Abstract
In this paper, a twisted-wire pairs (TWP) with random non-uniform twisting is established. It is divided into a complete pitch segment and a noncomplete pitch segment by the ratio between the pitch and the length. The randomness of the actual TWP cable is accurately simulated by the following methods: 1) random combination of complete pitch segments; 2) random combination of non-complete pitch segments; 3) random combination between 1) and 2). Based on the TWP model, an equivalent multi-conductor transmission lines (MTLs) model can be obtained. The neural network algorithm is introduced to describe the complex relationship between the arbitrary position of the TWP and the per-unit-length (p.u.l) parameter matrix. In addition, the crosstalk and the common-mode (CM) and differential-mode (DM) noise under field-to-wire coupling are predicted. The numerical results show that crosstalk and CM/DM noise in TWP cable are susceptible to the twisted pitch at high frequencies. Compared with full-wave simulation, the accuracy of the proposed method is proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.