Abstract

AbstractThe present study aims to examine the new understanding of cyclogenesis by analyzing the genesis sequence of formation of a very severe cyclonic storm Madi (6–13 December 2013) that occurred over the Bay of Bengal. We have generated a high‐resolution (18 km, 6 km, and 2 km) analysis using three‐dimensional variational data assimilation technique and Weather Research and Forecasting model. The genesis sequence of Madi cyclone is analyzed using the concepts in the marsupial theory and other theories of tropical cyclone formation. Major results are as follows: the developed analysis is found useful for tracking the movement of westward moving parent disturbance from 15 days prior to the genesis; identifying developed pouch region in the Lagrangian frame of reference; understanding the evolution of the pouch and convection within the pouch region and for the study of intensification inside the pouch region. Also, large‐scale priming of environment concurs with the hypotheses of the marsupial theory of tropical cyclogenesis. The analysis of dynamical and thermodynamical processes within the pouch region showed gradual moistening, uplifting of moisture, diabatic heating causing buoyant convection in the vorticity‐rich environment followed by vortex tube stretching, development of convection, heavy precipitation, strengthening of lower level convergence, and hence spin‐up during a day or two preceding the genesis of Madi cyclone. In general, it is concluded that intensification within pouch region during the cyclogenesis phase followed the marsupial paradigm and bottom‐up mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.