Abstract
This work was designed for the production of geopolymer based lightweight aggregate (LWA) using industrial by-products. Combination of fly ash (FA) and silica fume (SF) were used as precursors, whereas, combination of sodium hydroxide and sodium silicate were used as activator. Small amount of sodium bicarbonate was also used for surface hardening and early strength development. Pellets of dif- ferent sizes were crafted manually and cured by microwave radiations just for 5 minutes. The physico- mechanical properties of produced pellets (LWA) were discussed in light of: morphology, density, water absorption, specific gravity, porosity, aggregate impact value, and particle crushing strength. The prop- erties of LWA were also compared with literature reported synthetic LWAs cured with different tech- niques. The water absorption and specific gravity of LWAs were within the specified range provided by ACI standard. Mechanical strength properties briefed that the produced LWAs were strong enough to resist compressive load comparable to natural LWAs and many other synthetic LWAs. Thus, proposed curing method, microwave irradiation, has been found to be a sustainable and fast curing technique than conventional energy-intensive curing regimes. The results also confirmed that produced LWAs have po- tential to replace natural LWAs both in cast-in-place and precast concrete elements with possible eco- nomic, environmental, and technical benefits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.