Abstract
In the modeling of railway vehicle-track dynamics and wheel-rail damage, simplified tangential contact models based on ellipse assumption are usually used due to strict limitation of computational cost. Since most wheel-rail contact cases appear to be nonelliptic shapes, a fast and accurate tangential model for nonelliptic contact case is in demand. In this paper, two ellipse-based simplified tangential models (i.e., FASTSIM and FaStrip) using three alternative nonelliptic adaptation approaches, together with Kalker’s NORM algorithm, are applied to wheel-rail rolling contact cases. It aims at finding the best approach for dealing with nonelliptic rolling contact. Compared to previous studies, the nonelliptic normal contact solution in the present work is accurately solved rather than simplification. Therefore, it can avoid tangential modeling evaluation affected by inaccurate normal contact solution. By comparing with Kalker’s CONTACT code, it shows both FASTSIM-based and FaStrip-based models can provide accurate global creep force. With regard to local rolling contact solution, only the accuracy of FaStrip-based models is satisfactory. Moreover, Ayasse-Chollet’s local ellipse approach appears to be the best choice for nonelliptic adaptation.
Highlights
Wheel-rail damage has been a main concern of railway industry for increasing maintenance cost and potential risk
This paper focuses on simplified tangential wheel-rail contact modeling
Note that NORM is computationally expensive compared to simplified contact models developed in [24,25,26], it is still accepted for on-line vehicle dynamics calculation [31]
Summary
Wheel-rail damage has been a main concern of railway industry for increasing maintenance cost and potential risk. The term ‘efficient’ here means the contact model is capable of solving nonelliptic rolling contact accurately and fast, because wheel-rail damage simulation such as wear prediction always needs millions of contact cases to account for the actual operating distance. To this end, exact contact models based on finite element method [1,2,3,4,5,6,7,8,9] are often not feasible due to their relatively high computational cost. This paper focuses on simplified tangential wheel-rail contact modeling
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.