Abstract
BackgroundThis study addressed the potential of combining a high biomass rye winter cover crop with predawn leaf water potential (ΨPD) irrigation thresholds to increase agricultural water use efficiency (WUE) in cotton. To this end, a study was conducted near Tifton, Georgia under a manually-controlled, variable-rate lateral irrigation system using a Scholander pressure chamber approach to measure leaf water potential and impose varying irrigation scheduling treatments during the growing season. ΨPD thresholds were − 0.4 MPa (T1), − 0.5 MPa (T2), and − 0.7 MPa (T3). A winter rye cover crop or conventional tillage were utilized for T1-T3 as well.ResultsReductions in irrigation of up to 10% were noted in this study for the driest threshold (− 0.7 MPa) with no reduction in lint yield relative to the − 0.4 MPa and − 0.5 MPa thresholds. Drier conditions during flowering (2014) limited plant growth and node production, hastened cutout, and decreased yield and WUE relative to 2015.ConclusionsWe conclude that ΨPD irrigation thresholds between − 0.5 MPa and − 0.7 MPa appear to be viable for use in a ΨPD scheduling system with adequate yield and WUE for cotton production in the southeastern U.S. Rye cover positively impacted water potential at certain points throughout the growing season but not yield or WUE indicating the potential for rye cover crops to improve water use efficiency should be tested under longer-term production scenarios.
Highlights
This study addressed the potential of combining a high biomass rye winter cover crop with predawn leaf water potential (ΨPD) irrigation thresholds to increase agricultural water use efficiency (WUE) in cotton
Because conservation tillage has been touted to save up to 14% more water compared with conventional tillage methods (Sullivan et al 2007), methodologies should be developed to protect cover crop-derived water savings, while maintaining control over glyphosate resistant Palmer amaranth
Due to low soil water holding capacity and periods of episodic drought, supplemental irrigation is a necessity for Georgia cotton production
Summary
This study addressed the potential of combining a high biomass rye winter cover crop with predawn leaf water potential (ΨPD) irrigation thresholds to increase agricultural water use efficiency (WUE) in cotton. To this end, a study was conducted near Tifton, Georgia under a manually-controlled, variable-rate lateral irrigation system using a Scholander pressure chamber approach to measure leaf water potential and impose varying irrigation scheduling treatments during the growing season. ΨPD thresholds were − 0.4 MPa (T1), − 0.5 MPa (T2), and − 0.7 MPa (T3). A winter rye cover crop or conventional tillage were utilized for T1-T3 as well
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have