Abstract

The electrolyte filling process is considered one of the bottlenecks of lithium‐ion battery production due mainly to the long electrolyte wetting times. Additionally, the required experimental process design is time and material‐intensive, increasing the development costs of new materials or cell designs. A model of the filling process would allow for more efficient cell production, but until now, the published models have mainly been focused on individual components on a pore scale. Within the scope of this work, the model setup for a holistic examination of the electrolyte filling process is shown, allowing the study of the electrolyte wetting on a cell scale. The characteristic values of a porous medium, such as the permeability, are calculated with a microsimulation of an anode and a cathode pore structure. These values are then transferred to the ANSYS porous media model, and cell scale simulations are performed. Two cell formats and variations in the evacuation pressure and electrolyte temperature are simulated and compared to experimental wetting data. The results show that the simulation successfully models the wetting behavior for the investigated cell formats and cell assembly types, validating the model with experimental data both qualitatively and quantitatively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.