Abstract
Programmable logic controllers (PLCs) are embedded computers widely used in industrial control systems. Ensuring that a PLC software complies with its specification is a challenging task. Formal verification has become a recommended practice to ensure the correctness of safety-critical software, but is still underused in industry due to the complexity of building and managing formal models of real applications. In this paper, we propose a general methodology to perform automated model checking of complex properties expressed in temporal logics [e.g., computation tree logic (CTL) and linear temporal logic (LTL)] on PLC programs. This methodology is based on an intermediate model (IM) meant to transform PLC programs written in various standard languages [structured text (ST), sequential function chart (SFC), etc.] to different modeling languages of verification tools. We present the syntax and semantics of the IM, and the transformation rules of the ST and SFC languages to the nuXmv model checker passing through the IM. Finally, two real cases studies of the European Organization for Nuclear Research (CERN) PLC programs, written mainly in the ST language, are presented to illustrate and validate the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.