Abstract

Analysis and improvement of crop productivity is one of the most important areas in precision agriculture in the world, including Kazakhstan. In the context of Kazakhstan, agriculture plays a pivotal role in the economy and sustenance of its population. Accurate forecasting of agricultural yields, therefore, becomes paramount in ensuring food security, optimizing resource utilization, and planning for adverse climatic conditions. In-depth analysis and high-quality forecasts can be achieved using machine learning tools. This paper embarks on a critical journey to unravel the intricate relationship between weather conditions and agricultural outputs. Utilizing extensive datasets covering a period from 1990 to 2023, the project aims to deploy advanced data analytics and machine learning techniques to enhance the accuracy and predictability of agricultural yield forecasts. At the heart of this endeavor lies the challenge of integrating and analyzing two distinct types of datasets: historical agricultural yield data and detailed daily weather records of North Kazakhstan for 1990-2023. The intricate task involves not only understanding the patterns within each dataset but also deciphering the complex interactions between them. Our primary objective is to develop models that can accurately predict crop yields based on various weather parameters, a crucial aspect for effective agricultural planning and resource allocation. Using the capabilities of statistical and mathematical analysis in machine learning, a Time series analysis of the main weather factors supposedly affecting crop yields was carried out and a correlation matrix between the factors and crops was demonstrated and analyzed. The study evaluated regression metrics such as Root Mean Squared Error (RMSE) and R2 for Random Forest, Decision Tree, Support Vector Machine (SVM) algorithms. The results indicated that Random Forest generally outperformed the Decision Tree and SVM in terms of predictive accuracy for potato yield forecasting in North Kazakhstan Region. Random Forest Regressor showed the best performance with an R2 =0.97865. The RMSE values ranged from 0.25 to 0.46, indicating relatively low error rates, and the R2 values were generally positive, indicating a good fit of the model to the data. This paper seeks to address these needs by providing insights and predictive models that can guide farmers, policymakers, and stakeholders in making informed decisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call