Abstract

This article presents free vibration and buckling analyses of functionally graded blades with variable thickness subjected to mechanical and thermal loading using isogeometric analysis as a powerful numerical method. The proposed method is based on deployment of Hamilton’s principle to the two-dimensional kinematics of blades. The governing equations are derived in the context of a modified form of higher order shear deformation plate theory that merely needs C0-continuity (C0-higher order shear deformation plate theory). Without the necessity of defining a shear correction factor, the theory can accurately predict the solution for different thickness-to-length ratios. The numerical predictions for the buckling loads and natural frequencies are successfully compared with the available solutions in the published articles and in the lack of relevant results, finite element analysis using ANSYS is used for verification of the model. The effects of variable thickness and aspect ratio on the natural frequencies and mode shapes known as the frequencies loci veering phenomena are assessed for the first time, which is an important design factor for the blades. The proposed method uses non-uniform rational B-spline element, which is able to approximate linear and nonlinear thickness distribution and the couple modes with an excellent numerical consistency. The influences of aspect ratio, thickness variation, taper ratio, volume fraction exponent, and boundary conditions on the free vibration and buckling of variable-thickness functionally graded blades are also examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.