Abstract
In this research, thermal buckling of circular plates compose of functionally graded material (FGM) is considered. Equilibrium and stability equations of a FGM circular plate under thermal loads are derived, based on the higher order shear deformation plate theory (3rd order plate theory). Assuming that the material properties vary as a power form of the thickness coordinate variable z and using the variational method, the system of fundamental partial differential equations is established. A buckling analysis of a functionally graded circular plate (FGCP) under various types of thermal loads is carried out and the result are given in closed-form solutions. The results are compared with the critical buckling temperature obtained for FGCP based on first order (1st order plate theory) and classical plate theory (0 order plate theory) given in the literature. The study concludes that higher order shear deformation theory accurately predicts the behavior of FGCP, whereas the first order and classical plate theory overestimates buckling temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.