Abstract

Over the past 2 decades Bayesian methods have been gaining popularity in many scientific disciplines. However, to this date, they are rarely part of formal graduate statistical training in clinical science. Although Bayesian methods can be an attractive alternative to classical methods for answering certain research questions, they involve a heavy "overhead" (e.g., advanced mathematical methods, complex computations), which pose significant barriers to researchers interested in adding Bayesian methods to their statistical toolbox. To increase the accessibility of Bayesian methods for psychopathology researchers, this article presents a gentle introduction of the Bayesian inference framework and a tutorial on implementation. We first provide a primer on the key concepts of Bayesian inference and major implementation considerations related to Bayesian estimation. We then demonstrate how to apply hierarchical Bayesian modeling (HBM) to experimental psychopathology data. Using a real dataset collected from two clinical groups (schizophrenia and bipolar disorder) and a healthy comparison sample on a psychophysical gaze perception task, we illustrate how to model individual responses and group differences with probability functions respectful of the presumed underlying data-generating process and the hierarchical nature of the data. We provide the code with explanations and the data used to generate and visualize the results to facilitate learning. Finally, we discuss interpretation of the results in terms of posterior probabilities and compare the results with those obtained using a traditional method. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.