Abstract

Studies show that artificial cognitive agents can be equipped with mechanisms for learning of basic language categories. However, after a period of initial learning performed under perfect circumstances, agents get to be deployed into dynamic real world environments leading to possibly partial observations of agent's surroundings. This paper presents a general strategy for applying categories with prototypes on incomplete observational data. It is assumed that the task is carried out by an artificial agent which has autonomously developed its private ontological knowledge base using complete observations. The agent expresses its internal uncertainty about an assignment of a category to an observed object by relying on epistemic modal operators of possibility, belief, and knowledge. An underlying theory builds upon accomplishments of a theory of grounding of feasible epistemic statements in artificial cognitive agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.