Abstract
ABSTRACT The application of travel demand models to transportation planning has triggered great interests in issues that potentially improve the accuracy of model forecasts. These forecasts, however, are subject to various sources of input and model uncertainties. Focusing on travel choice behavior, this paper draws attention to the use of an ensemble-based model for addressing these uncertainties. A random multinomial logit (RMNL) model is developed by assembling a collection of multinomial logit (MNL) models. The bootstrapping procedure and the random feature selection are employed to capture the uncertainties in the model. A case study of investigating travel mode choice behaviors that illustrates situations necessitating the RMNL model is presented. Results suggest that the uncertainty related to predictions is reduced and the prediction accuracy is much improved. The RMNL model is computationally efficient and provides useful interpretations by estimating variable significance. Also, the RMNL model is able to deal with high-dimensional data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.