Abstract
The traditional sphere-structured support vector machines algorithm is one of the learning methods. It can partition the training samples space by means of constructing the spheres with the minimum volume covering all training samples of each pattern class in high-dimensional feature space. However, the decision rule of the traditional sphere-structured support vector machines cannot assign ambiguous sample points such as some encircled by more than two spheres to valid class labels. Therefore, the traditional sphere-structured support vector machines is insufficient for obtaining the better classification performance. In this article, we propose a novel decision rule applied to the traditional sphere-structured support vector machines. This new decision rule significantly improves the performance of labeling ambiguous points. Experimental results of seven real datasets show the traditional sphere-structured support vector machines based on this new decision rule can not only acquire the better classification accuracies than the traditional sphere-structured support vector machines but also achieve the comparable performance to the classical support vector machines.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have