Abstract

Information security has undoubtedly become a critical aspect of modern cybersecurity practices. Over the past half-decade, numerous academic and industry groups have sought to develop machine learning, deep learning, and other areas of artificial intelligence-enabled analytics into information security practices. The Conference on Applied Machine Learning (CAMLIS) is an emerging venue that seeks to gather researchers and practitioners to discuss applied and fundamental research on machine learning for information security applications. In 2021, CAMLIS partnered with ACM Digital Threats: Research and Practice (DTRAP) to provide opportunities for authors of accepted CAMLIS papers to submit their research for consideration into ACM DTRAP via a Special Issue on Applied Machine Learning for Information Security. This editorial summarizes the results of this Special Issue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.