Abstract

Over the recent decades, the number of different manufacturers and models of cerebrospinal fluid shunt valves constantly increased. Proper identification of shunt valves on X-ray images is crucial to neurosurgeons and radiologists to derive further details of a specific shunt valve, such as opening pressure settings and MR scanning conditions. The main aim of this study is to evaluate the feasibility of an AI-assisted shunt valve detection system. The dataset used contains 2070 anonymized images of ten different, commonly used shunt valve types. All images were acquired from skull X-rays or scout CT-images. The images were randomly split into a 80% training and 20% validation set. An implementation in Python with the FastAi library was used to train a convolutional neural network (CNN) using a transfer learning method on a pre-trained model. Overall, our model achieved an F1-score of 99% to predict the correct shunt valve model. F1-scores for individual shunt valves ranged from 92% for the Sophysa Sophy Mini SM8 to 100% for several other models. This technology has the potential to automatically detect different shunt valve models in a fast and precise way and may facilitate the identification of an unknown shunt valve on X-ray or CT scout images. The deep learning model we developed could be integrated into PACS systems or standalone mobile applications to enhance clinical workflows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call