Abstract

The aim of this study is to evaluate whether we could develop a machine learning method to distinguish models of cerebrospinal fluid shunt valves (CSF-SVs) from their appearance in clinical X-rays. This is an essential component of an automatic MRI safety system based on X-ray imaging. To this end, a retrospective observational study using 416 skull X-rays from unique subjects retrieved from a clinical PACS system was performed. Each image included a CSF-SV representing the most common brands of programmable shunt valves currently used in US which were split into five different classes. We compared four machine learning pipelines: two based on engineered image features (Local Binary Patterns and Histogram of Oriented Gradients) and two based on features learned by a deep convolutional neural network architecture. Performance is evaluated using accuracy, precision, recall and f1-score. Confidence intervals are computed with non-parametric bootstrap procedures. Our best performing method identified the valve type correctly 96% [CI 94–98%] of the time (CI: confidence intervals, precision 0.96, recall 0.96, f1-score 0.96), tested using a stratified cross-validation approach to avoid chances of overfitting. The machine learning pipelines based on deep convolutional neural networks showed significantly better performance than the ones based on engineered image features (mean accuracy 95–96% vs. 56–64%). This study shows the feasibility of automatically distinguishing CSF-SVs using clinical X-rays and deep convolutional neural networks. This finding is the first step towards an automatic MRI safety system for implantable devices which could decrease the number of patients that experience denials or delays of their MRI examinations.

Highlights

  • Setting, where many patients are unable to provide information regarding implantable devices due to acute medical conditions and a timely MRI can be essential for life saving procedures

  • We focus on cerebrospinal fluid shunt valves (CSF-SVs) a type of implanted device important for hydrocephalus treatment

  • Lavinio et al.[13] tested 5 different types of CSF-SV (Codman Hakim, Miethke ProGAV, Medtronic Strata, Sophysa Sophy and Polaris) and found that, with the exception of the Polaris and ProGAV models, all are prone to unintentional reprogramming when exposed to heterogeneous magnetic fields stronger than 40 mT

Read more

Summary

Introduction

Setting, where many patients are unable to provide information regarding implantable devices due to acute medical conditions and a timely MRI can be essential for life saving procedures. Lavinio et al.[13] tested 5 different types of CSF-SV (Codman Hakim, Miethke ProGAV, Medtronic Strata, Sophysa Sophy and Polaris) and found that, with the exception of the Polaris and ProGAV models, all are prone to unintentional reprogramming when exposed to heterogeneous magnetic fields stronger than 40 mT. For this reason, these valves are considered “MR conditional” according to the American Society for Testing and Materials (ASTM)[14] and require monitoring and readjusting valve setting after the MRI examination. We believe that we are the first group to propose such system and demonstrate its feasibility on clinical data

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call