Abstract

Hydrogen transfer reduction processes are attracting increasing interest from synthetic chemists in view of their operational simplicity. 3,3′-bis(diphenylphosphinoamine)-2,2′-bipyridine, (Ph2PNH)2C10H6N2, was prepared through a single step reaction of 3,3′-diamino-2,2′-bipyridine with diphenylchlorophosphine. Reaction of (Ph2PNH)2C10H6N2 with [Ru(η6-benzene)(μ-Cl)Cl]2, [Rh(μ-Cl)(cod)]2 or [Ir(η5-C5Me5)(μ-Cl)Cl]2 gave a range of new bridged dinuclear complexes [C10H6N2{NHPPh2Ru(η6-benzene)Cl2}2], 1, [C10H6N2{PPh2NHRh(cod)Cl}2], 2 and [C10H6N2{NHPPh2Ir(η5-C5Me5)Cl2}2], 3, respectively. All new complexes have been fully characterized by analytical and spectroscopic methods. 1H31P-{1H} NMR, 1H13C HETCOR or 1H1H COSY correlation experiments were used to confirm the spectral assignments. 1, 2 and 3 are suitable catalyst precursors for the transfer hydrogenation of acetophenone derivatives. Notably [Ru((Ph2PNH)2C10H6N2)(η6-benzene)Cl2], 1 acts as an excellent catalyst, giving the corresponding alcohols in 98–99% yields in 10 min at 82 °C (TOF ≤600 h−1) for the transfer hydrogenation reaction in comparison to analogous rhodium or iridium complexes. This transfer hydrogenation is characterized by low reversibility under these conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.