Abstract

AbstractHydrogen transfer reduction processes are attracting increasing interest from synthetic chemists in view of their operational simplicity. Reaction of [Ph2PNHCH2‐C4H3S] with [Ru(η6‐benzene)(µ‐Cl)Cl]2, [Rh(µ‐Cl)(cod)]2 and [Ir(η5‐C5Me5)(µ‐Cl)Cl]2 gave a range of new monodendate complexes [Ru(Ph2PNHCH2‐C4H3S)(η6‐benzene)Cl2], 1, [Rh(Ph2PNHCH2‐C4H3S)(cod)Cl], 2, and [Ir(Ph2PNHCH2‐C4H3S)(η5‐C5Me5)Cl2], 3, respectively. All new complexes were fully characterized by analytical and spectroscopic methods. 1H31P NMR, 1H13C HETCOR or 1H1H COSY correlation experiments were used to confirm the spectral assignments. 1–3 are suitable catalyst precursors for the transfer hydrogenation of acetophenone derivatives. Notably [Ru(Ph2PNHCH2‐C4H3S)(η6‐benzene)Cl2], 1, acts as an excellent catalyst, giving the corresponding alcohols in 98–99% yields in 30 min at 82 °C (TOF ≤200 h−1) for the transfer hydrogenation reaction in comparison to analogous rhodium or iridium complexes. This transfer hydrogenation is characterized by low reversibility under these conditions. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.