Abstract
A primal–dual decomposition method is presented to solve the separable convex programming problem. Convergence to a solution and Lagrange multiplier vector occurs from an arbitrary starting point. The method is equivalent to the proximal point algorithm applied to a certain maximal monotone multifunction. In the nonseparable case, it specializes to a known method, the proximal method of multipliers. Conditions are provided which guarantee linear convergence.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have