Abstract

We present geometrically passive T-junction breakup as a high-throughput preparation method for polymer microcarriers. In passive T-junction breakup, an alternative method that can satisfy requirements for uniform size distribution and high production, a polymer solution droplet is split into numerous smaller droplets as it passes T-junctions, and is then polymerized into particles as solvents evaporate. Microparticles generated from poly(lactic-co-glycolic acid) (PLGA) were used to demonstrate the applicability of this method. The proposed method of droplet fission, controlled by microfluidic flow, allowed for preparation of biopolymer particles at 8000 Hz and size distribution of CV < 5%. Feasibility of the prepared PLGA microparticles was verified as microcarriers for functional materials: lidocaine, carbon nanotubes (CNTs), and 3T3 cells. The prepared microparticles showed a slower and more linear drug release profile compared to those generated using the conventional evaporation method. Highly porous microparticles were also prepared successfully using gelatin as a porogen in the T-junction breakup device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.