Abstract

Pollen tube, the fastest tip growing plant cell, plays essential role in life cycle of flowering plants. It is extremely sensitive to external cues and this makes it as a suitable cellular model for characterizing the cell response to the influence of various signals involved in cellular growth metabolism. For in-vitro study of pollen tube growth, it is essential to provide an environment the mimics the internal microenvironment of pollen tube in flower. In this context, microfluidic platforms take advantage of miniaturization for handling small volume of liquids, providing a closed environment for in-vitro single cell analysis, and characterization of cell response to external cues. These platforms have shown their ability for high-throughput cellular analysis with increased accuracy of experiments, and reduced cost and experimental times. Here, we review the recent applications of microfluidic devices for investigating several aspects of biology of pollen tube elongation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.