Abstract
Applying some of Ernest Michael's selection theorems, from recent fixed point theorems on u.s.c. multimaps, we deduce generalizations of the classical Bolzano theorem, several fixed point theorems on multimaps defined on almost convex sets, almost fixed point theorems, coincidence theorems, and collectively fixed point theorems. These results are related mainly to Michael maps, that is, l.s.c. multimaps having nonempty closed convex values.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have