Abstract

This paper presents an original probabilistic method for the numerical computations of Greeks (i.e. price sensitivities) in finance. Our approach is based on the {\it integration-by-parts} formula, which lies at the core of the theory of variational stochastic calculus, as developed in the Malliavin calculus. The Greeks formulae, both with respect to initial conditions and for smooth perturbations of the local volatility, are provided for general discontinuous path-dependent payoff functionals of multidimensional diffusion processes. We illustrate the results by applying the formula to exotic European options in the framework of the Black and Scholes model. Our method is compared to the Monte Carlo finite difference approach and turns out to be very efficient in the case of discontinuous payoff functionals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.