Abstract

We study the numerical Adomian decomposition method for the pricing of European options under the well-known Black–Scholes model. However, because of the nondifferentiability of the pay-off function for such options, applying the Adomian decomposition method to the Black–Scholes model is not straightforward. Previous works on this assume that the pay-off function is differentiable or is approximated by a continuous estimation. Upon showing that these approximations lead to incorrect results, we provide a proper approach, in which the singular point is relocated to infinity through a coordinate transformation. Further, we show that our technique can be extended to pricing digital options and European options under the Vasicek interest rate model, in both of which the pay-off functions are singular. Numerical results show that our approach overcomes the difficulty of directly dealing with the singularity within the Adomian decomposition method and gives very accurate results. doi:10.1017/S1446181117000438

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.