Abstract
The emergence of New Delhi metal beta-lactamase (NDM-1)-producing bacteria and their worldwide spread pose great challenges for the treatment of drug-resistant bacterial infections. These bacteria can hydrolyze most β-lactam antibacterials. Unfortunately, there are no clinically useful NDM-1 inhibitors. In the current work, we manually collected NDM-1 inhibitors reported in the past decade and established the first NDM-1 inhibitor database. Four machine-learning models were constructed using the structural and property characteristics of the collected compounds as input training set to discover potential NDM-1 inhibitors. In order to distinguish between high active inhibitors and putative positive drugs, a three-classification strategy was introduced in our study. In detail, the commonly used positive and negative divisions are converted into strongly active, weakly active, and inactive. The accuracy of the best prediction model designed based on this strategy reached 90.5%, compared with 69.14% achieved by the traditional docking-based virtual screening method. Consequently, the best model was used to virtually screen a natural product library. The safety of the selected compounds was analyzed by the ADMET prediction model based on machine learning. Seven novel NDM-1 inhibitors were identified, which will provide valuable clues for the discovery of NDM-1 inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.