Abstract
The emergence and worldwide spreads of carbapenemase producing bacteria, especially New Delhi metallo-β-lactamase (NDM-1), has made a great challenge to treat antibiotics-resistant bacterial infections. It can hydrolyse almost all β-lactam antibacterials. Unfortunately, there are no clinically useful inhibitors of NDM-1. In this study, structure-based virtual screening method led to the identification of Baicalin as a novel NDM-1 inhibitor. Inhibitory assays showed that Baicalin possessed a good inhibition of NDM-1 with IC50 values of 3.89 ± 1.1 μM and restored the susceptibility of E.coli BL21(DE3)/pET28a-NDM-1 to clinically used β-lactam antibiotics. Molecular docking and molecular dynamics simulations obtained a complex structure between the relatively stable inhibitor molecule Baicalin and NDM-1 enzyme. The results showed that the carboxyl group in Baicalin directly interacted with the Zn2+ in the active center of the enzyme, and the residues such as Glu152, Gln123, Met67, Trp93 and Phe70 in the enzyme formed hydrogen bonds with Baicalin to further stabilize the complex structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.