Abstract

Background As we enter the post-genome sequencing era and begin to sift through the enormous amount of genetic information now available, the need for technologies that allow rapid, cost-effective, high-throughput detection of specific nucleic acid sequences becomes apparent. Multiplexing technologies, which allow for simultaneous detection of multiple nucleic acid sequences in a single reaction, can greatly reduce the time, cost and labor associated with single reaction detection technologies. Methods The Luminex® xMAP™ system is a multiplexed microsphere-based suspension array platform capable of analyzing and reporting up to 100 different reactions in a single reaction vessel. This technology provides a new platform for high-throughput nucleic acid detection and is being utilized with increasing frequency. Here we review specific applications of xMAP technology for nucleic acid detection in the areas of single nucleotide polymorphism (SNP) genotyping, genetic disease screening, gene expression profiling, HLA DNA typing and microbial detection. Conclusions These studies demonstrate the speed, efficiency and utility of xMAP technology for simultaneous, rapid, sensitive and specific nucleic acid detection, and its capability to meet the current and future requirements of the molecular laboratory for high-throughput nucleic acid detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call