Abstract

A long-period grating (LPG) fiber optic sensor has been developed for monitoring the relative humidity levels and toxic chemicals, especially the chemical warfare agents. The principle of operation of this sensor is based on monitoring the refractive index changes exhibited by the reactive coating applied to the surface of the LPG region in response to analytes. Specific interaction of the analyte with the thin film polymer coating produces as the output a wavelength shift that can be correlated with the concentration of the analyte. Thin polymer coating for relative humidity sensor is made of carboxymethylcellulose (CMC) covalently bound to the surface of the fiber. Coating for chemical warfare agent detection employs metal nanoclusters imbedded in polyethylenimine (PEI) for specific reaction. The relative humidity level can be determined from 0% to 95% and the level of toxic chemicals can be determined is at least on the scale of 1 ppm. This small-size and low-cost LPG fiber optic sensor exhibited high sensitivity, rapid response, repeatability and durability. The goal of developing relative humidity sensor is to produce a fiber optic sensor-based health monitoring system for building, while the chemical sensor has found its application in point detection network for chemical warfare agent monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.