Abstract

A number of features make peripheral blood lymphocytes an excellent system for studying both genotoxicity and cytotoxicity in humans. They are an abundant and readily accessible source of somatic cells, mostly in a non-proliferative state, but able to be stimulated by mitogens to enter the cell cycle. The blastocyte transformation of lymphocytes is a useful model for investigating the mechanisms which regulate cell-cycle progression in mammalian cells. By stimulating lymphocytes in vitro, it is possible to detect the genetic damages they have sustained in vivo, which become manifest as chromosomal aberrations, sister-chromatid exchanges or gene mutations. The metabolic properties of lymphocytes have been extensively studied, especially with reference to their characteristic collection of enzymes involved in nucleotide turnover, which makes them exquisitely sensitive to changes in intracellular levels of DNA precursors. The data collected on the ability of lymphocytes to metabolise xenobiotics show a marked quantitative difference between resting and proliferating lymphocytes, and minor qualitative differences between lymphocytes and other cell types, e.g. hepatocytes. An indirect approach to detect the metabolism of genotoxic xenobiotics by lymphocytes is the analysis of DNA adducts in their chromatin after in vivo or in vitro exposure. Lymphocytes can be employed to identify the (cyto)genetic consequences of in vivo genotoxic exposure and inter-individual variation in sensitivity to genotoxic agents. The analysis of mutations at the hgprt locus in lymphocytes is a promising approach for the study of somatic-cell mutations in humans and of the possible mechanisms of in vivo selection against mutants.In the field of cytotoxicity, the applications of lymphocytes are, as yet, still few: the main effect measured is the impairment of the proliferative response to mitogens. But lymphocytes can be employed as primary human cells to be treated in vitro with mutagenic or toxic chemicals in standard genotoxicity and cytotoxicity assays, and offer the advantage of avoiding the problems of inter-species extrapolation of results by testing in a human system. Moreover, the (geno)toxic effects detected in lymphocytes after treatments in vitro may give information on the spontaneous or environmentally-determined susceptibility of the individual donors to xenobiotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call