Abstract

In recent years, the escalating global energy crisis and the ever-increasing concern over environmental pollution have stimulated extensive research efforts towards exploring new green energy sources and accelerating the transformation and upgrading of traditional energy structures. Lithium-ion batteries (LIBs), known for their exceptional properties including high energy density, excellent discharge performance, long lifespan, non-toxicity, and environmental friendliness, have been regarded as the backbone of new energy systems. Additionally, graphene, a two-dimensional novel nanomaterial, has recently gained attention as a kind of electrode material exhibiting great promise for utilization in LIBs due to exceptional performance attributes. Notably, significant evidence from current studies has revealed that the integration of graphene into LIBs leads to a substantial improvement in their electrochemical performance. However, advancements in the performance during cycling and the capacity for charging of LIBs remain imperative. Therefore, the investigation of materials based on graphene for enhancing the performance of LIBs holds substantial importance. This paper has various aspects related to the utilization of graphene and graphene-based composites materials in electrodes in LIBs. A comprehensive analysis is conducted on the current literature and recent progress in the respective field, including the modification of composites formed by integrating metal oxides with graphene, the usage of graphene as a conductive agent, etc. Furthermore, this paper provides an outlook on the future enhancements and developments concerning the utilization of graphene in LIBs. The findings and analyses presented in this study hope to contribute novel insights for researchers and encourage the development of LIBs with larger capacity and longerlasting operational capabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call