Abstract

There are a lot of methods developed to predict untested phenotypes in schemes commonly used in genomic selection (GS) breeding. The use of GS for predicting disease resistance has its own particularities: (a) most populations shows additivity in quantitative adult plant resistance (APR); (b) resistance needs effective combinations of major and minor genes; and (c) phenotype is commonly expressed in ordinal categorical traits, whereas most parametric applications assume that the response variable is continuous and normally distributed. Machine learning methods (MLM) can take advantage of examples (data) that capture characteristics of interest from an unknown underlying probability distribution (i.e., data-driven). We introduce some state-of-the-art MLM capable to predict rust resistance in wheat. We also present two parametric R packages for the reader to be able to compare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.