Abstract

Inheritance of stem rust (caused by Puccinia graminis f. sp. tritici) resistance in wheat can be either qualitative or quantitative. While quantitative disease resistance is believed to be more durable, it is more difficult to evaluate if it is expressed only in mature plants, i.e. adult plant resistance (APR). Marker-assisted selection (MAS) methods for APR would be useful; however, the multigenic nature of APR impedes the use of MAS efforts that aim to pyramid only a few target genes. A promising alternative is genomic selection (GS), which utilizes genome-wide marker coverage to predict genotypic values for quantitative traits. In turn, GS can reduce the selection cycle length of a breeding program for traits like APR that could take several seasons to generate reliable phenotypes. In this paper, we describe the GS process for use in crop improvement, both specifically for APR and in general. We also propose a GS–based wheat breeding scheme for quantitative resistance to stem rust that, when compared to current breeding schemes, can reduce cycle time by up to twofold and facilitates pyramiding of major genes with APR genes. Thus, GS could be an important tool for achieving the Borlaug Global Rust Initiative’s (BGRI) goal of developing durable stem rust resistance in wheat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.