Abstract
As the world’s population continues to grow and the demand for energy increases, there is an urgent need for sustainable and efficient energy systems. Renewable energy sources, such as wind and solar power, have the potential to play a significant role in meeting this demand, but their intermittency can make integration into existing energy systems a challenge. Moreover, the development of sustainable energy systems has become even more critical in recent years, due to a confluence of events, including the decline in fuel prices, geopolitical conflicts, and the recent COVID-19 pandemic. The decrease in fuel prices has led to a decline in investment in renewable energy and has slowed the transition to sustainable energy systems. Additionally, geopolitical conflicts and pandemics have highlighted the need for resilient and self-sufficient energy systems that can operate independently of external factors. Also, energy storage technologies play a critical role in achieving this goal by providing reliable backup power and enabling microgrids to operate independently of the larger power grid. As such, developing efficient and effective energy storage technologies is essential for creating sustainable energy systems that can meet the demands of modern society while mitigating the impact of external factors. In this regard, this work provides an overview of microgrids’ latest energy storage technologies, including their applications, types, integration strategies, optimization algorithms, software, and uncertainty analysis. Energy storage technologies have a wide range of applications in microgrids, including providing backup power and balancing the supply and demand of energy. Different energy storage techniques have been discussed, including batteries, flywheels, supercapacitors, pumped hydro energy storage, and others. Moreover, integration strategies of energy storage in microgrids, models, assessment indices, and optimization algorithms used in the design of energy storage systems are presented in detail. The capabilities of software used in energy storage sizing are explored. Further, uncertainty analysis in modeling energy storage devices is presented and discussed. This state-of-the-art technology has been prepared to demonstrate the effectiveness of energy storage technologies in microgrids, providing valuable insights for future developments in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.