Abstract

Abstract If a partial differential equation is reduced to an ordinary differential equation in the form u ′ ( ξ ) = G ( u , θ 1 , … , θ m ) under the traveling wave transformation, where θ 1 , … , θ m are parameters, its solutions can be written as an integral form ξ − ξ 0 = ∫ d u G ( u , θ 1 , … , θ m ) . Therefore, the key steps are to determine the parameters' scopes and to solve the corresponding integral. When G is related to a polynomial, a mathematical tool named complete discrimination system for polynomial is applied to this problem so that the parameter's scopes can be determined easily. The complete discrimination system for polynomial is a natural generalization of the discrimination △ = b 2 − 4 a c of the second degree polynomial a x 2 + b x + c . For example, the complete discrimination system for the third degree polynomial F ( w ) = w 3 + d 2 w 2 + d 1 w + d 0 is given by △ = − 27 ( 2 d 2 3 27 + d 0 − d 1 d 2 3 ) 2 − 4 ( d 1 − d 2 2 3 ) 3 and D 1 = d 1 − d 2 2 3 . In the paper, we give some new applications of the complete discrimination system for polynomial, that is, we give the classifications of traveling wave solutions to some nonlinear differential equations through solving the corresponding integrals. In finally, as a result, we give a partial answer to a problem on Fan's expansion method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.