Abstract

The need for a greener and more sustainable energy system evokes a need for more extensive energy system transition research. The penetration of distributed energy resources and Internet of Things technologies facilitate energy system transition towards the next generation of energy system concepts. The next generation of energy system concepts include “integrated energy system”, “multi-energy system”, or “smart energy system”. These concepts reveal that future energy systems can integrate multiple energy carriers with autonomous intelligent decision making. There are noticeable trends in using the agent-based method in research of energy systems, including multi-energy system transition simulation with agent-based modeling (ABM) and multi-energy system management with multi-agent system (MAS) modeling. The need for a comprehensive review of the applications of the agent-based method motivates this review article. Thus, this article aims to systematically review the ABM and MAS applications in multi-energy systems with publications from 2007 to the end of 2021. The articles were sorted into MAS and ABM applications based on the details of agent implementations. MAS application papers in building energy systems, district energy systems, and regional energy systems are reviewed with regard to energy carriers, agent control architecture, optimization algorithms, and agent development environments. ABM application papers in behavior simulation and policy-making are reviewed with regard to the agent decision-making details and model objectives. In addition, the potential future research directions in reinforcement learning implementation and agent control synchronization are highlighted. The review shows that the agent-based method has great potential to contribute to energy transition studies with its plug-and-play ability and distributed decision-making process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.