Abstract
A methodology was developed to select adequate, commercially available micromixers for mixing sensitive chemical reactions. The range of flow rates can be derived at which the selected micromixers have to be operated to ensure the required mixing intensity. This methodology enables the selection of adequate micromixers for the scale up of the chemical reactions to higher flow rates. Two chemical test reactions were used for an experimental approach to characterize the selected microreactors. Both reactions are based on the effect of micromixing on the product distribution of competitive reaction systems. Flow rates and pressure drop were determined at which the mixing times are short relative to the reaction times. In this case, influences of mixing on the selectivity of the reference reaction can be neglected. Since two reference reactions with different time scales for mixing and reaction were tested, it was possible to study the mixing performance of a variety of micromixers over a wide range of flow rates. The investigated micromixers differ in their dimensions, internal geometry, and mixing principle. In the present work, overview tables are provided as a tool to evaluate the commercially available micromixers for specific applications. Further, the influence of mixing principle and pressure drop is discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have