Abstract

In order to reduce the influence of thermal lens effect on beam quality of the multi-pass laser amplifier, a new method of spherical-aberration self-compensation based on ZEMAX physical optical simulation is proposed. Firstly, the change of quality of gaussian beam after passing the thermal lens is simulated according to the principle of geometric optics. And the simulation results show that if two identical thermal lenses are placed symmetrically near the focal point of the laser beam, the degradation of the beam quality caused by the first thermal lens can be compensated by the second thermal lens. Secondly, a four-pass laser amplifier based on the spherical-aberration self-compensation theory is designed by the sequence mode of ZEMAX software. Finally, according to the theoretical model, we design a picosecond fiber-solid hybrid laser amplifier which is seeded by an all polarization-maintaining (PM) fiber laser. The output power of the all PM fiber laser is 2 W. After the solid-state amplifier, the final output laser power reaches 8.5 W with M<sup>2</sup> factor of 1.2. The beam quality is well preserved by the four-pass amplification structure which is favorable to the spherical-aberration compensation. This system, which combines the advantages of the all PM fiber amplifier and the solid-state laser amplifier, enables high repetition rate and good beam quality with high gain picosecond pulses. It makes significant contributions to many applications such as material micro-processing, laser ranging and laser detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call