Abstract
A constraint loss correction procedure using the Weibull stress criterion is specified in ISO 27306. However, this standard is applicable only to structural steel components with defects, not to welded joints. Therefore, we propose a method for estimating the brittle fracture limit of a weld with a notch in the heat-affected zone (HAZ) and residual stress based on the Weibull stress criterion. Three-point bending (3PB) tests and wide-plate (WP) tension tests of HAZ-notched welds made of 780-MPa class high-strength steel were conducted at −40 °C. The minimum critical crack tip opening displacement (CTOD) of the WP specimen fracturing at the coarse-grained region of the HAZ (CGHAZ) was approximately four times that of the 3PB specimen. Then, the effects of specimen geometry, residual stress, crack-front shape, and HAZ microstructure classification on the Weibull stress were investigated by using a finite element analysis (FEA). The results of these analyses showed that the specimen geometry, the welding residual stress, and HAZ microstructure affect the Weibull stress of HAZ-notched welds as crack driving force. Based on above results, the CTOD–Weibull stress curves for 3PB and WP specimens fracturing at CGHAZ were calculated by using an FEA. It was confirmed that the brittle fracture limit of an HAZ-notched weld with residual stress could be predicted from the Weibull stress criterion because predicted critical CTOD of WP specimens obtained by Weibull stress included experimental critical CTOD of WP specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.