Abstract
This paper presents a method for estimating the brittle fracture limit of a weld with a notch in the heat-affected zone (HAZ) and residual stress based on the Weibull stress criterion. A constraint loss correction procedure using the Weibull stress criterion is specified in ISO 27306. However, this standard is applicable only to structural steel components with defects, not to welded joints. Therefore, we conducted fracture tests and finite element analyses to propose a new evaluation method for welded structural components. In this study, three-point bending (3PB) tests and wide-plate (WP) tension tests of HAZ-notched welds made of 780-MPa-class high-strength steel were conducted at −40°C. Brittle fractures occurred in the HAZ regions of all the specimens, and the critical crack tip opening displacement (CTOD) values obtained in the 3PB and WP tests were approximately 0.02–0.07 mm and 0.08–0.11 mm, respectively. The minimum critical CTOD of the WP specimen fracturing at the coarse-grained region of the HAZ (CGHAZ) was approximately four times that of the 3PB specimen. These results confirmed that the difference of specimen geometry affects the brittle fracture resistance of a HAZ-notched weld with residual stress. Hence, the assessment of the brittle fracture limit of a welded structural component with a defect obtained by the fracture toughness of a 3PB specimen would be excessively conservative. The effects of specimen geometry, residual stress, crack-front shape and HAZ microstructure classification on the Weibull stress were investigated to clarify the difference of experimental critical CTOD for 3PB and WP by using a finite element analysis. The results of this analysis showed that the Weibull stress of WP specimen was larger than one of 3PB specimen in all CTOD region due to difference of geometry. The welding residual stress increased the Weibull stress only for WP. Compressive residual stress and crack front shape for 3PB specimen did not affect the Weibull stress. The difference of HAZ microstructure distribution for same welded joint affects the Weibull stress for 3PB and WP specimens. Finally, it was confirmed that the brittle fracture limit of a HAZ-notched weld with residual stress could be predicted from the Weibull stress criterion because critical CTOD of WP specimens predicted by critical CTOD of 3PB specimens fracturing at the CGHAZ included critical CTOD of WP specimens obtained by experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.