Abstract

This paper deals with convolution-type Urysohn equations of the first kind. Finding a solution for such equations is an ill-posed problem. For it to be solved, regularization algorithms and the continuous wavelet transform are used. Similar to the Fourier transform, the continuous wavelet transform is applied to convolution-type equations (based on the Fourier and wavelet transforms) and to Urysohn equations with unknown shift. The wavelet transform is preferable for the cases with approximated right-hand sides and for type 1 equations. We demonstrated that the application of the wavelet transform to Urysohn-type equations with unknown shift translates into a solution of a nonlinear equation with an oscillating kernel. Depending on the availability of a priori information, a combination of regularization and iterative algorithms with the use of close equations are effective for solving convolution-type equations based on the continuous wavelet transform and Urysohn equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.