Abstract
Exponential scaling presents a significant challenge in electronic structure calculations performed on classical computers. This paper explores how quantum computer algorithms can accurately represent quantum systems. Variational Quantum Eigensolver (VQE) algorithm is used to compute the ground state energy of hydrogen and helium sequences by implementing variational principle and quantum gates as trial wavefunction. This technique combines classical optimization with quantum computing calculations to simulate quantum systems on noisy and resource-limited computers. The resulting calculated energy is highly consistent to the corresponding exact values and Hartree-Fock calculations with a trend of when the number of atoms increases the calculated energy becomes more negative, leading to a decrease in the percentage error. Moreover, the convergence of the ground state energy of hydrogen and helium atoms was effectively optimized. The desired energy was reached, proven by adjusting the expectation value, and gradually achieving unity in state overlap. These findings demonstrate the VQE method's accuracy in calculating simple quantum systems and its scalability for larger atomic and molecular system, such as those in quantum chemistry and material science. However, challenges in quantum computer simulations, such as limited in qubit numbers and the presence of noise, require further advancements. Therefore, implementing a larger basis sets, advanced qubit mapping, specific chemistry ansatz, and flexible optimization techniques is one way to improve overall calculation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.