Abstract

Succi, PJ, Dinyer, TK, Byrd, MT, Voskuil, CC, and Bergstrom, HC. Application of V̇ o2 to the critical power model to derive the critical V̇ o2 . J Strength Cond Res 36(12): 3374-3380, 2022-The purposes of this study were to (a) determine whether the critical power (CP) model could be applied to V̇ o2 to estimate the critical V̇ o2 (CV̇ o2 ) and (b) to compare the CV̇ o2 with the V̇ o2 at CP (V̇ o2 CP), the ventilatory threshold (VT), respiratory compensation point (RCP), and the CV̇ o2 without the V̇ o2 slow component (CV̇ o2 slow). Nine subjects performed a graded exercise test to exhaustion to determine V̇ o2 peak, VT, and RCP. The subjects performed 4 randomized, constant power output work bouts to exhaustion. The time to exhaustion (T Lim ), the total work (W Lim ), and the total volume of oxygen consumed with (TV̇ o2 ) and without the slow component (TV̇ o2 slow) were recorded during each trial. The linear regressions of the TV̇ o2 vs. T Lim , TV̇ o2 slow vs. T Lim , and W Lim vs. T Lim relationship were performed to derive the CV̇ o2 , CV̇ o2 slow, and CP, respectively. A 1-way repeated-measures analysis of variance ( p ≤ 0.05) with follow-up Sidak-Bonferroni corrected pairwise comparisons indicated that CV̇ o2 (42.49 ± 3.22 ml·kg -1 ·min -1 ) was greater than VT (30.80 ± 4.66 ml·kg -1 ·min -1 ; p < 0.001), RCP (36.74 ± 4.49 ml·kg -1 ·min -1 ; p = 0.001), V̇ o2 CP (36.76 ± 4.31 ml·kg -1 ·min -1 ; p < 0.001), and CV̇ o2 slow (38.26 ± 2.43 ml·kg -1 ·min -1 ; p < 0.001). However, CV̇ o2 slow was not different than V̇ o2 CP ( p = 0.140) or RCP ( p = 0.235). Thus, the CP model can be applied to V̇ o2 to derive the CV̇ o2 and theoretically is the highest metabolic steady state that can be maintained for an extended period without fatigue. Furthermore, the ability of the CV̇ o2 to quantify the metabolic cost of exercise and the inefficiency associated with the V̇ o2 slow component may provide a valuable tool for researchers and coaches to examine endurance exercise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.