Abstract

Al65Cu20Fe15 alloy powder was firstly encapsulated by the conventional sol–gel technique utilizing tetraethoxysilane (TEOS) as the precursor in order to improve its corrosion resistance. The optimization was based on nine well-planned orthogonal experiments (L9 (34)). Four main factors in the encapsulation process (i.e. reaction temperature, ethylenediamine concentration, TEOS concentration and feeding method) were investigated. According to the visual analyses of the result, the optimum condition was obtained. Based on the optimal condition in the conventional sol–gel technique, the encapsulation process was then conducted under ultrasonic irradiation. The effects of ultrasound amplitude and irradiation time on the encapsulation process were also studied. FTIR, XRD, SEM, DLS and EDS were also used to characterize the resulting sample. Finally, the corrosion inhibition efficiency of encapsulated powder attained 99.3% in the acidic condition of pH 1, and the average grain size (d50) of the encapsulated powder was just 4.8% larger than that of the raw powder, implying that there was a thin silica film on the surface of powder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call